Random process and simple sampling Monte Carlo simulation

Arjaree Thongon

Random or Stochastic processes

- The process THAT you cannot predict from and observation of a single event, how the next will come out
- Examples:
 - Coin: the only prediction about outcome -50% the coin will land on its tail
 - Dice: In large number of throws probability for each face appearing is 1/6

Question: What is the most probable number for the sum of two dice?

Here comes Monte Carlo simulation!

Applications for MC simulation

Stochastic processes

5

- Complex systems (science)
- Numerical integration
- Risk management
- Financial planning

. . .

How do we do that?

- You let the computer to throw "the coin" and record the outcome
- You need a program that randomly generates a variable
- with relevant probability distribution

Random Number Generators (RNG)

- There are no true random number geneators but pseudo RNG!!!
- Reason: computers have only a limited number of bits to represent a number
- It means: the sequence of random numbers will repeat itself (period of the generator)

Good Random Number Generators

- Equal probability for any number inside interval [a,b]
- Yet independent of the previous number
- Long period
- Produce the same sequence if started with same initial
- Conditions
- **f**ast

Linear Congruent Method for RNG

Generates a random sequence of numbers $\{x_1, x_2, ..., x_k\}$ of length M over the interval [0, M-1]

 $X_i = (ax_{i-1} + c) \mod M$

 $= \mod (ax_{i-1} + c, M)$

• The starting value X_0 is called "seed"

Coefficients a and c should be chosen very carefully

NOTE: mod(b,d) = b - int(b/d)*d

Random Numbers on interval [A,B]

Scale results from x_i on [0,M-1] to y_i on [0,1]

 $y_i = x_i / (M-1)$

Scale results from x_i on [0,1] to y_i on [A,B]

$$y_i = A + (B - A) x_i$$

Magic numbers for Linear Congruent Method

M (length of the sequence) is quite large
Generally, the last number before overflow (for 32 bit machines M = 2³¹ -1 ≈ 2*10⁹)
Good "magic" number for linear congruent method: x_i = mod (ax_{i-1} + c, M)

$$a = 16807, c = 0, M = 2^{31} - 1 = 2147483647$$

How can we be check the RNG?

Plots:

- 2D figure, where x_i and y_i
 are from two random
 sequences (check correlation
 between 2 sequences)
- **3D** figure (x_i, y_i, z_i)
- 2D figure for correlation (x_i, x_{i+1})

How can we check the RNG?

Uniformity

14

- Equal fractions of random numbers should fall into equal "area" in space.
- Uncorrelated sequence
 - Any subsequence of random numbers should not be correlated with any other subsequence of random numbers.

Long period

The repetition should occur only after the generation of a very large set of random numbers.

Efficiency

Can be implemented in a high level language and consume less than 1% of overall CPU time in any applications.

How can we check the RNG?: Example-Randu

Plot the histogram of the random number with the interval [0,1] using the formula

 $x_{n+1} = x_n/m$

from RANDU

To check if it is uniform

Look ok!

How can we check the RNG?: Example-Randu

To check the correlation
 Plot the coordinate

 (x_{n+1}, x_n) to form 2D
 distribution area

Still lool ok!

How can we check the RNG?: Example-Randu

Linear Congruent Generator (LCG) Example

Linear Congruent Generator (LCG) Example

Long period random number generator

$$X_i = (ax_{i-1} + c) \bmod m$$

The linear congruential sequence define by a, m, c and x₀ has period m if only if

c is relatively prime to *m*

b = a - 1 is a multiple of p,

for every prime *p* dividing by *m*

b is a multiple of 4, if m is a multiple of 4

Some commonly used parameters for LCG

a	m	С	period
7 ⁵	2 ³¹ - 1	0	2 ³¹ - 2
1664525	2 ³²	1013904223	232
69069	2 ³⁰	0	2 ³⁰
6364136223846793005	264	1	264

- Funny way to choose
 - Randomly taking from telephone directory.
 - Exposing a Geiger counter to radioactive source for a minute (SHIELD YOUSELF) and use the resulting count.
 - Asking a friend.
 - Asking an enemy.
 - Taking from lotto or horse racing.

Seed matter : X ₀
Better way to choose
From computer clock (current system time)
Example, in each day, most computers would have
Hour: $0 \le c \le 23$
Minute: $0 \le t_m \le 59$
Second: $0 \le t_s \le 59$
One-hundredth second: $0 \le t_{hs} \le 99$
We may assign a seed
$-x_0 = 100[60(60t_h + t_m) + t_s] + t_{hs}$

Example: choosing X₀

Structure of time in Turbo C

struct time{
 unsigned char ti_min; /*minutes*/
 unsigned char ti_hour; /*hours*/
 unsigned char ti_hund; /*hundredths of seconds*/
 unsigned char ti_sec; /* seconds */

};

Example: choosing X₀

Calling time function #include <stdio.h> #include <dos.h> int main (void)

struct time t;

gettime(&t);

printf("The current time is: %2d:%02d:%02d.%02d\n", t.ti_hour, t.ti_min, t.ti_sec, t.ti_hund);

return0;