Random process and simple sampling Monte Carlo simulation

Arjaree Thongon

Random or Stochastic processes

- The process THAT you cannot predict from and observation of a single event, how the next will come out
- Examples:

Coin: the only prediction about outcome -50% the coin will land on its tail

- Dice: In large number of throws - probability for each face appearing is $1 / 6$

Question: What is the most probable number for the sum of two dice?

Here comes Monte Carlo simulation!

Applications for MC simulation

- Stochastic processes
- Complex systems (science)
- Numerical integration
- Risk management
- Financial planning
- ...

How do we do that?

- You let the computer to throw "the coin" and record the outcome
- You need a program that randomly generates a variable
- ... with relevant probability distribution

Random Number Generators (RNG)

- There are no true random number geneators but pseudo RNG!!!
- Reason: computers have only a limited number of bits to represent a number
- It means: the sequence of random numbers will repeat itself (period of the generator)

Good Random Number Generators

- Equal probability for any number inside interval [a,b]
- Yet independent of the previous number
- Long period
- Produce the same sequence if started with same initial
- Conditions
- fast

Linear Congruent Method for RNG

- Generates a random sequence of numbers $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ of length M over the interval $[0, M-1]$

$$
\begin{aligned}
X_{i} & =\left(a x_{i-1}+c\right) \bmod M \\
& =\bmod \left(a x_{i-1}+c, M\right)
\end{aligned}
$$

- The starting value X_{0} is called "seed"
- Coefficients a and c should be chosen very carefully

NOTE: $\quad \bmod (b, d)=b-\operatorname{int}(b / d) * d$

Example: $a=4, c=1, M=9, x_{0}=3$

$$
\begin{aligned}
X_{i} & =\left(a x_{i-1}+c\right) \bmod M \\
& =\bmod \left(a x_{i-1}+c, M\right)
\end{aligned}
$$

- We get

$$
\begin{aligned}
& x_{1}=4 \\
& x_{2}=8 \\
& x_{3}=6 \\
& x_{4}-x_{9}=7,2,0,1,5,3
\end{aligned}
$$

Data interval: 0-8, i.e. [0,M-1]
Period: 9 (Maximum) i.e. M numbers (then repeat)

Random Numbers on interval $[\mathrm{A}, \mathrm{B}]$

- Scale results from x_{i} on $[0, M-1]$ to y_{i} on $[0,1]$

$$
y_{i}=x_{i} /(M-1)
$$

- Scale results from x_{i} on $[0,1]$ to y_{i} on $[A, B]$

$$
y_{i}=A+(B-A) x_{i}
$$

Magic numbers for Linear Congruent Method

- M (length of the sequence) is quite large
- Generally, the last number before overflow

$$
\text { (for } 32 \text { bit machines } M=2^{31}-1 \approx 2 * 10^{9} \text {) }
$$

- Good "magic" number for linear congruent method:

$$
x_{i}=\bmod \left(a x_{i-1}+c, M\right)
$$

$$
\mathrm{a}=16807, \mathrm{c}=0, \mathrm{M}=2^{31}-1=2147483647
$$

How can we be check the RNG?

Plots:

2D figure, where x_{i} and y_{i} are from two random sequences (check correlation between 2 sequences)

- 3D figure $\left(x_{i}, y_{i}, z_{i}\right)$
- 2D figure for correlation $\left(x_{i}, x_{i+1}\right)$

How can we check the RNG?

- Uniformity
- Equal fractions of random numbers should fall into equal "area" in space.
- Uncorrelated sequence
- Any subsequence of random numbers should not be correlated with any other subsequence of random numbers.
- Long period
- The repetition should occur only after the generation of a very large set of random numbers.
- Efficiency
- Can be implemented in a high level language and consume less than 1% of overall CPU time in any applications.

How can we check the RNG?: Example-Randu

- Plot the histogram of the random number with the interval $[0,1]$ using the formula

$$
x_{n+1}=x_{n} / m
$$

from RANDU

- To check if it is uniform
- Look ok!

How can we check the RNG?: Example-Randu

- To check the correlation
- Plot the coordinate (x_{n+1}, x_{n}) to form 2D distribution area
- Still lool ok!

How can we check the RNG?: Example-Randu

BUT

Problem found when observe at right angles.

Linear Congruent Generator (LCG) Example

Seed $X_{0}=1$

$$
X_{n+1}^{\prime}=X_{n+1} / 101, X_{n}^{\prime}=X_{n} / 101
$$

$$
X_{n+1}=7 X_{n} \bmod 101
$$

Seed $X_{0}=1$

$$
X_{n+1}^{\prime}=X_{n+1} / 101, X_{n}^{\prime}=X_{n} / 101
$$

Linear Congruent Generator (LCG) Example

$$
X_{n}^{\prime}
$$

$$
X_{n+1}=12 X_{n} \bmod 51
$$

$$
\text { Seed } X_{0}=1
$$

$$
X_{n+1}^{\prime}=X_{n+1} / 51, X_{n}^{\prime}=X_{n} / 51
$$

$$
X_{n+1}=\mathbf{7}^{5} \mathrm{Xn} \bmod \mathbf{2}^{\mathbf{3 1}} \mathbf{- 1}
$$

$$
\text { Seed } X_{0}=1
$$

$$
X_{n+1}^{\prime}=X_{n+1} / 101, X_{n}^{\prime}=X_{n} / 101
$$

Long period random number generator

$$
X_{i}=\left(a x_{i-1}+c\right) \bmod m
$$

- The linear congruential sequence define by a, m, c and x_{0} has period m if only if
- c is relatively prime to m
- $b=a-1$ is a multiple of p, for every prime p dividing by m
- b is a multiple of 4 , if m is a multiple of 4

Some commonly used parameters for LCG

a	m	c	period
7^{5}	$2^{31}-1$	0	$2^{31}-2$
1664525	2^{32}	1013904223	2^{32}
69069	2^{30}	0	2^{30}
6364136223846793005	2^{64}	1	2^{64}

Seed matter : $\mathbf{X}_{\mathbf{0}}$

- Funny way to choose
- Randomly taking from telephone directory.
- Exposing a Geiger counter to radioactive source for a minute (SHIELD YOUSELF) and use the resulting count.
- Asking a friend.
- Asking an enemy.
- Taking from lotto or horse racing.

Seed matter : $\mathbf{X}_{\mathbf{0}}$

- Better way to choose
-From computer clock (current system time)
Example, in each day, most computers would have
- Hour: $0 \leq c \leq 23$
- Minute: $0 \leq t_{m} \leq 59$
-Second: $0 \leq t_{s} \leq 59$
- One-hundredth second: $0 \leq t_{h s} \leq 99$
- We may assign a seed
$x_{0}=100\left[60\left(60 t_{h}+t_{m}\right)+t_{s}\right]+t_{h s}$

Example: choosing $\mathbf{X}_{\mathbf{0}}$

Structure of time in Turbo C

struct time\{
unsigned char ti_min; /*minutes*/
unsigned char ti_hour; /*hours*/
unsigned char ti_hund; /*hundredths of seconds*/ unsigned char ti_sec; /* seconds */
\};

Example: choosing \mathbf{X}_{0}

```
Calling time function
#include <stdio.h>
#include <dos.h>
int main (void)
{
    struct time t;
    gettime(&t);
    printf("The current time is: %2d:%02d:%02d.%02d\n", t.ti_hour,
t.ti_min, t.ti_sec, t.ti_hund);
    return0;
}
```

